Optimizing Banking Stock Price Prediction: Deep Learning Based Approach
DOI:
https://doi.org/10.56696/ijamer.v2i1.30Keywords:
Stock, Bank, Prediction, Stock Prediction, Deep LearningAbstract
Recently, the stock market has experienced significant instability, especially during the global pandemic which resulted in unprecedented economic impact. The main focus of this research is to develop an optimal prediction model using deep learning techniques for the projection of closing prices of bank stocks during the pandemic period. This study evaluates the performance of banking stocks, specifically ARTO, BRIS, BBNI, and BMRI in the Jakarta Composite Index (JCI). Data was extracted from Yahoo Finance and processed through LSTM and GRU algorithms, including data cleaning, normalisation, and descriptive statistical analysis. Scoring metrics such as MSE, RMSE, and MAPE are used to measure the effectiveness of the predictive models. The results show that the LSTM and GRU models can predict stock prices well. These findings provide a basis for trading strategies and improved decision-making in the stock market. Recent research confirms the importance of integrating deep learning methods such as LSTM and GRU in stock price prediction, helping to understand complex financial market fluctuations and improve prediction accuracy.
References
Agustina, N., Hariyani, D., Widiasmara, A., & Jarwa, T. (2022). Efek New Normal Terhadap Harga Saham dan Volume Transaksi. Akuntansi : Jurnal Akuntansi Integratif, 8(1). https://doi.org/10.29080/jai.v8i1.871
Alzaman, C. (2024). Deep learning in stock portfolio selection and predictions. Expert Systems with Applications, 237, 121404. https://doi.org/10.1016/j.eswa.2023.121404
Beniwal, M., Singh, A., & Kumar, N. (2024). Forecasting multistep daily stock prices for long-term investment decisions: A study of deep learning models on global indices. Engineering Applications of Artificial Intelligence, 129, 107617. https://doi.org/10.1016/j.engappai.2023.107617
Fadli, H. F., & Km, J. K. (n.d.). Identifikasi Cyberbullying pada Media Sosial Twitter Menggunakan Metode LSTM dan BiLSTM.
Haldar, A., & Sethi, N. (2021). The news effects of COVID-19 on global financial market volatility. Buletin Ekonomi Moneter Dan Perbankan, 24, 33–58. https://doi.org/10.21098/bemp.v24i0.1464
Herliani, F. D., & Kudus, A. (n.d.). Penanganan Data Missing dengan Algoritma Multivariate Imputation By Chained Equations (MICE).
Idham, I., Ghudafa Taufik Akbar, M., Panggabean, S., & Noor, M. (2022). Perbandingan Prediksi Harga Saham Dengan Menggunakan LSTM GRU Dengan Transformer. Smart Comp: Jurnalnya Orang Pintar Komputer, 11(1), 44–47. https://doi.org/10.30591/smartcomp.v11i1.3185
Ilham, A. (2020). hybrid Metode Boostrap Dan Teknik Imputasi Pada Metode C4-5 Untuk Prediksi Penyakit Ginjal KroniS. 8(1).
Karno, A. S. B., Hastomo, W., Arif, D., Moreta, E. S., Gunadarma, U., No, J. M. R., & Barat, J. (2020). Optimasi Portofolio Dan Prediksi Cryptocurrency Menggunakandeep Learning Dalam Bahasa Python. 4.
Karyadi, Y. (2022). Prediksi Kualitas Udara Dengan Metoda LSTM, Bidirectional LSTM, dan GRU. JATISI (Jurnal Teknik Informatika dan Sistem Informasi), 9(1), 671–684. https://doi.org/10.35957/jatisi.v9i1.1588
Khalis Sofi, Aswan Supriyadi Sunge, Sasmitoh Rahmad Riady, & Antika Zahrotul Kamalia. (2021). Perbandingan Algoritma Linear Regression, Lstm, Dan Gru Dalam Memprediksi Harga Saham Dengan Model Time Series. Seminastika, 3(1), 39–46. https://doi.org/10.47002/seminastika.v3i1.275
Liu, Q., Tao, Z., Tse, Y., & Wang, C. (2022). Stock market prediction with deep learning: The case of China. Finance Research Letters, 46, 102209. https://doi.org/10.1016/j.frl.2021.102209
Maghriby, M. A., & Irawan, H. (2023). Analisis Persepsi Publik Mengenai Resesi Ekonomi Global 2023 Sektor Bisnis di Media Sosial Twitter Menggunakan Algoritma Naïve Bayes dan Topic Modelling. Widya Cipta: Jurnal Sekretari Dan Manajemen, 7(2), 74–85. https://doi.org/10.31294/widyacipta.v7i2.15577
Maulana, A., Martanto, M., & Ali, I. (2024). Prediksi Hasil Produksi Panen Bawang Merah Menggunakan Metode Regresi Linier Sederhana. JATI (Jurnal Mahasiswa Teknik Informatika), 7(4), 2884–2888. https://doi.org/10.36040/jati.v7i4.7281
Meriani, A. P., & Rahmatulloh, A. (2024). Perbandingan Gated Recurrent Unit (Gru) Dan Algoritma Long Short Term Memory (Lstm) Linear Refression Dalam Prediksi Harga Emas Menggunakan Model Time Series. Jurnal Informatika dan Teknik Elektro Terapan, 12(1). https://doi.org/10.23960/jitet.v12i1.3808
Nabillah, I., & Ranggadara, I. (2020). Mean Absolute Percentage Error untuk Evaluasi Hasil Prediksi Komoditas Laut. JOINS (Journal of Information System), 5(2), 250–255. https://doi.org/10.33633/joins.v5i2.3900
Niederhoffer, V., & Regan, P. J. (2018). Earnings Changes, Analysts’ Forecasts and Stock Prices. Financial Analysts Journal, 28(3), 65–71. https://doi.org/10.2469/faj.v28.n3.65
Nilsen, A. (2022). Perbandingan Model RNN, Model LSTM, dan Model GRU dalam Memprediksi Harga Saham-Saham LQ45. Jurnal Statistika dan Aplikasinya, 6(1), 137–147. https://doi.org/10.21009/JSA.06113
Nirad, D. W. S., & Surendro, K. (2018). Analisis Data Tracer Study Dengan Mengidentifikasi Outlier Menggunakan Teknik Data Mining. Jurnal Momentum, 20.
Nugroho, P. A., Fenriana, I., Arijanto, R., & Kom, M. (2020). Learning Menggunakan Convolutional Neural Network ( Cnn ) Pada Ekspresi Manusia. 2(1).
Permana, A. H., Pohan, E. R., & Ananda, Y. Y. (2022). Mengukur Pengaruh CAR, ROA, NIM, LDR, dan Rasio NPL terhadap Harga Saham Bank pada Era Pre-Pandemic dan Era During Pandemic Covid-19. Syntax Idea, 4(2), 281–300. https://doi.org/10.46799/syntax-idea.v4i2.1768
Phan, D. H. B., & Narayan, P. K. (2020). Country Responses and the Reaction of the Stock Market to COVID-19—A Preliminary Exposition. Emerging Markets Finance and Trade, 56(10), 2138–2150. https://doi.org/10.1080/1540496X.2020.1784719
Pradana, D. B. P. (2017). Pengaruh Penerapan Tools Google Classroom Pada Model Pembelajaran Project Based Learning Terhadap Hasil Belajar Siswa. 02.
Pratama, A. R. I., Latipah, S. A., & Sari, B. N. (2022). Optimasi Klasifikasi Curah Hujan Menggunakan Support Vector Machine (Svm) Dan Recursive Feature Elimination (Rfe). JIPI (Jurnal Ilmiah Penelitian Dan Pembelajaran Informatika), 7(2), 314–324. https://doi.org/10.29100/jipi.v7i2.2675
Prayogi, A. (2021). Rasio Pasar sebagai Faktor Prediktif dalam Pengembalian Investasi. Journal of Economic, Management, Accounting and Technology, 4(2), 149–159. https://doi.org/10.32500/jematech.v4i2.1669
Rasyid, Dewi Agushinta R., & Dharma Tintri Ediraras. (2021). Deep Learning Methods In Predicting Indonesia Composite Stock Price Index (IHSG). International Journal of Computer and Information Technology(2279-0764), 10(5). https://doi.org/10.24203/ijcit.v10i5.153
Rizvi, S. A. R., Juhro, S. M., & Narayan, P. K. (2021). Understanding market reaction to COVID-19 monetary and fiscal stimulus in major ASEAN countries. Buletin Ekonomi Moneter Dan Perbankan, 24(3), 313–334. https://doi.org/10.21098/bemp.v24i3.1690
Robinson, R. S. (2022). Purposive Sampling. In A. C. Michalos (Ed.), Encyclopedia of Quality of Life and Well-Being Research (1st ed., pp. 5243–5245). Springer Netherlands. https://doi.org/10.1007/978-94-007-0753-5_2337
Sethia, A., & Raut, P. (2019). Application of LSTM, GRU and ICA for Stock Price Prediction. In S. C. Satapathy & A. Joshi (Eds.), Information and Communication Technology for Intelligent Systems (Vol. 107, pp. 479–487). Springer Singapore. https://doi.org/10.1007/978-981-13-1747-7_46
Sihombing, P. R., Suryadiningrat, S., Sunarjo, D. A., & Yuda, Y. P. A. C. (2023). Identifikasi Data Outlier (Pencilan) dan Kenormalan Data Pada Data Univariat serta Alternatif Penyelesaiannya. Jurnal Ekonomi Dan Statistik Indonesia, 2(3), 307–316. https://doi.org/10.11594/jesi.02.03.07
Siringoringo, R., Angin, R. P., Rumahorbo, B., & No, J. H. T. (2022). Model Klasifikasi Genetic-Xgboost Dengan T-Distributed Stochastic Neighbor Embedding Pada Peramalan Pasar. 1.
Sonkavde, G., Dharrao, D. S., Bongale, A. M., Deokate, S. T., Doreswamy, D., & Bhat, S. K. (2023). Forecasting Stock Market Prices Using Machine Learning and Deep Learning Models: A Systematic Review, Performance Analysis and Discussion of Implications. International Journal of Financial Studies, 11(3), 94. https://doi.org/10.3390/ijfs11030094
Suryanegara, G. A. B., & Purbolaksono, M. D. (2021). Peningkatan Hasil Klasifikasi pada Algoritma Random Forest untuk Deteksi Pasien Penderita Diabetes Menggunakan Metode Normalisasi. 5(1).
Suzuki, M., Sakaji, H., Izumi, K., & Ishikawa, Y. (2022). Forecasting Stock Price Trends by Analyzing Economic Reports With Analyst Profiles. Frontiers in Artificial Intelligence, 5, 866723. https://doi.org/10.3389/frai.2022.866723
Syahfitri, N., Rahmadani, N., & Nasution, N. S. (2023). Penggunaan Metode Statistik Deskriptif dalam Menganalisis Hasil pemilu. 2(1).
Widiputra, H., & Juwono, E. (2024). Parallel multivariate deep learning models for time-series prediction: A comparative analysis in Asian stock markets. IAES International Journal of Artificial Intelligence (IJ-AI), 13(1), 475. https://doi.org/10.11591/ijai.v13.i1.pp475-486
Wilsen, W., Rahayu, W., & Santi, V. M. (2018). Penerapan Imputasi Ganda dengan Metode Predictive Mean Matching (PMM) untuk Pendugaan Data Hilang pada Model Regresi Linear. Jurnal Statistika dan Aplikasinya, 2(1), 12–20. https://doi.org/10.21009/JSA.02102
Yahaya, O. (2021). Analysts’ forecasts and stock prices: Evidence from Nigeria. Iranian Journal of Accounting, Auditing and Finance, Online First. https://doi.org/10.22067/ijaaf.2021.40230
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 International Journal Of Accounting, Management, And Economics Research
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.